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Abstract-- Some ceramic materials for high temperature applications are partially transparent for radiative
transfer. The refractive indices of these materials can be substantially greater than one which influences
internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been
obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat
conduction and heating al the boundaries by convection and radiation. Two-flux and diffusion methods
are investigated here to obtain approximate solutions using a simpler formulation than required for exact
numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent
results for gray and two band spectral calculations. The diffusion method yields a good approximalion for
spectral behavior in laminated multiple layers if the overall oplical thickness is larger than about ten. A
hybrid spectral rnodcl is developed using Ihe two-flux method in the optically thin bands, and radiative

diffusion in bands that are optically thick.

INTRODUCTION

SOME OF the ceramic materials being developed and

evaluated for high temperature applications are par-

tially transparent to radiant energy. For high tem-

perature conditions such as in a combustion chamber,

infrared ant visible radiation fi'om the surroundings

penetrates into the material heating it internally. Since

temperatures in the material are elevated, internal

radiant emission becomes significant ; this is especially

true for materials with high refractive indices since

internal emission depends on the refractive index

squared. In addition to emission, energy transfer

within the material depends on internal radiant

absorption and scattering, and on heat conduction.

As a result, radiant energy can affect internal tem-

peratures of some ceramic engine parts and coatings

that partially transmit radiation in portions of the

wavelength spectrum. It must be determined when

radiative processes can be important, and how large

an effect they have when compared with calculations

when materials are assumed opaque.

The refractive indices of single or composite

materials can have a considerable effect. Surface

reflections depend on the ratio of refractive indices

across an interface ; this affects the amount of external

radiation transmitted into a material, and the amount

reflected From internal interfaces in a composite. Since

emission in a material depends on its refractive index

squared, internal emission can be many times that

from a blackbody radiating into a vacuum. So that

radiation leaving through an interface does not exceed

that of a blackbody, there is substantial energy reflec-

tion at the internal surface of the interface, mostly by

total internal reflection. Scattering is another means

for energy transfer in the layer; it interacts with the

internally reflected energy and alters the temperature
distribution.

There is an extensive literature on radiative transfer

in plane layers. Much of the work has been for gases

with refractive indices of one although some of the

early work for predicting heat treating and cooling of

glass plates [I] included refractive index effects. The

literature has been briefly reviewed in our previous

work [2-4] and is not repeated here. In refs. [2-4]

temperature distributions and heat flows in partially

transmitting materials are predicted by radiative

analyses using the transfer equations coupled with

heat conduction. The governing integral equations are

solved numerically. Each exterior boundary is heated

by radiation and convection, and the effect of diffuse

interface reflections is included. Results were obtained

for a single layer that is either gray or has a two- or

three-band spectral variation of the absorption

coeflicicnt, and for a gray two-layer composite. This

simulates a ceramic layer with reinforcement by
another material, and also examines the behavior of

a ceramic coating used to protect another ceramic.

Various amounts of isotropic scattering are included

to simulate internal reflections by a granular or rein-

forcing st ructure.

The formulation and solution of the exact spectral

equations of radiative transfer including scattering is

rather complicated : hence it is desirable to have more

convenient approximate methods if these will yield

accurate results. Two-flux, diffusion, and hybrid

methods are investigated here to provide a simplified

formulation for obtaining approximate solutions. The
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NOMENCLATURE

a absorption coefficient of material in layer
[m ']

c,, velocity of radiant propagation in

vacuum [m s- 'l

C_ constant in blackbody spectral flux

[W m-' sr-']

C: constant in blackbody spectral flux

[m K]

integration constant in energy equation

[W re-'l; CON = CON�DaTa,,

D thicknesses of plane layer [m]

e,h blackbody spectral flux [W m-2]

FS blackbody fraction in band at small

frequencies

G flux quantity defined in equation ( Ia)

[W m-2]; d = G/aT_,

GS, GL values of G in bands at small and

large frequencies

H dimensionless convection-radiation

parameter, h/a T_,

ht, h2 convective heat transfer coefficients at

two boundaries of layer [Wm--'K _]

k thermal conductivity of layer

[Wm 'K-']

K extinction coefficient of layer, a + a_ [m -_]

N conduction-radiation parameter,

k/_T_,D

n refractive index of layer

q heat flux [W m 2]; _ = q/aT4,

q÷, q- radiative heat fluxes in positive and

negative x directions [W m :]

qr radiative heat flux in layer [W m-:] ;

gt, = q,/a r_,

q O externally incident radiation flux

[W m 2]; _ = ¢'/aT_
qS, qL radiative flux in spectral bands with

small and large frequencies

R(n) function of refractive index defined in

equation (22)

T absolute temperature [K]

t dimensionless temperature, TITs,

T_, Tg, gas temperatures on two sides of

layer [K]

x coordinate in layer [m] : X = x/D

Greek symbols

optical coordinate of layer K x

_D optical thickness, K D

v frequency of radiation [s ']

p', p° reflectivity of interface for internally or

externally incident radiation

¢r Stefan-Boltzmann constant [W m z K 4]

a_ scattering coefficient of layer [m _}

D scattering albedo of layer,

a_/(a+ _) = a_/K.

Subscripts

b blackbody

c value at cutoff frequency

D based on the length D

f, s first and second internal interfaces of a

layer, Fig. 2

g gas on either side of laminated layer

h, s higher and smaller refractive indices

./ index indicatingjth layer in a composite

m the ruth frequency band

r radiative quantity

S, L spectral bands with small and large

frequencies

tot total heat flux by conduction and
radiation

v frequency dependent quantity

!, J the first and final layers in a composite of

J layers

I, 2 quantities at sides x = 0 and D.

Superscripts

i. o quantity incident from inside or outside

+, - flux in positive or negative x direction.

two-flux equations are given in refs. [5, 6], and the

method is shown in refs. [7, 8] to give accurate results

for gray plane layers with a refractive index of one.
The method is extended here to include refi'active

indices larger than one, and for heating conditions

such that the boundary temperatures are not specified

and are found during the solution. The two-flux

method is found to be convenient for layers of mod-

erate optical thickness; it yields excellent results for

gray and two band spectral calculations in single lay-

ers with or without isotropic scattering.

The diffusion method is extended here to spectral

calculations in a multilayered composite where each

layer can have a differcnt refractive index. It yields a

very good approximation for spectral heat transfer

characteristics in single and multiple layers if the over-

all optical thickness is larger than about ten.

A hybrid spectral model is developed that uses the

two-flux method in optically thin spectral bands and

the diffusion method in bands 1hat are optically thick.

This also provides good agreement with exact numeri-

cal solutions. When an optically thick band is present,

convergence of the iterative solution method is

improved compared with the two-flux method.

ANALYSIS

The two-flu.x" approxhnation ./br spectral radiath'e

H'tln._l'er

A plane layer of absorbing, emitting, and iso-

tropically scattering material is subjected on both
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FIG. I. Geometry. coordinate system, and nomenclature for
radiative fluxes in the two-flux model for heat transfer in an

absorbing, emitting, and scattering semitransparent layer.

boundaries to convection and incident radiation as

shown in Fig. I. The two-flux method is used to obtain

the layer temperature distribution and the heat flux

transferred through the layer. The results are com-

pared with exact numerical solutions of the radiative

transfer equations to determine the accuracy of the

two-flux method for a layer with a refractive index

greater than one. The boundaries are assumed diffuse.

The two flux equations are obtained from the radiative

transfer equations as shown in refs. [5, 6 pp. 772,

785], and are given by either thc Milnc-Eddington or

the Schuster-Schwarzschild approximations. These give

the same functional relations, but differ by a numerical

coefficient in the radiative flux relation. The Milne-

Eddington approximation is used here.

The two-flux equations. The two fluxes are in the

positive and negative directions as shown in Fig. I ;

they are each assumed isotropic and the equations

are written spectrally in terms of frequency. A flux

quantity G,. and the net spectral radiative flux q,, are
related to the two directional fluxes by the spectral

relations,

G, = 2(q_ +q,r): q,, = q,_-q,,- (la.b)

Equations (la) and (Ib) can bc solved for the positive

and negative spectral fluxes in terms of G, and q,.r:
these relations will be used in the analytical devel-

opment,

q';=2\2 +q" q"=2 2 "

The two-flux equations including scattering are given

in ref. [5] as,

1 dq,,d v = (I-ff_,)[4e,h(x)dv-G,.(.x)dv] (3)
K, dx

I dG,
dv = - 3q,.r(.v)dv. (4)

K, dx

The blackbody spectral flux in equation (3) contains

the square of the refractive index and is given by

'3 • "i

e,.t,(v,T) dv = _ieCT,.-;;,y- _ dr. (5)

A third relation, in addition to equations (3) and

(4), is the energy equation. For the present conditions

of steady state without internal heat sources, the total

heat flow through the layer is a constant. It is given

by the sum of conduction and radiation heat flows so

the energy equation is [6, p. 695],

_kdd- j'"q'"' = dx + q,., dr. (6)

The three equations (3). (4) and (6). subject to proper

boundary conditions, are to be solved for qr(x). G(x)

and T(x).

Equation (4) is integrated over all v and the integral
of q,., over v is eliminated by using equation (6). The

resulting equation is integrated over x to yield

q,,,x = -kT(x)- 3 dr+CON (7)

where CON is an integration constant. Evaluating

equation (7) at x = 0 and D relates the boundary

values of Tand G to the values of q,,, and CON

1 I '_ G,,(O) d_CON=kT(O)+_, K_,. ' (8)

1 f: G_,:(_D)d,,+CON" (9)q,,,,D = -kT(D)- 3 K,.

Equation (3) integrated with respect to x will be used

later in the form,

q,.r(X) dv = qvr(0) dv + K,.( I - f/,.)

xfi[4e,.t,(.r)dv-G,(x)dv]d., (10)

where Gh is a function of x as it depends on the local

T(x).
Botmdarv comfitions. The boundary conditions are

now developcd. The total energy flow within the layer

is by radiation and conduction. Because radiant

absorption in the two-flux method is a volume

process, there is no absorption at a boundary surface

since the surface does not have any volume. Hence at

each boundary the external convection is balanced

only by internal heat conduction. The total energy

flow by radiation and conduction within the layer

is constant across the layer; the qtot can then be ex-

pressed at the boundaries as the sum of external

convection (which is equal to internal conduction)

and internal radiation. This yields at x = 0 and D.

q,,, = hdT_,- T(0)]+f,'j, q,,,(O)dv
(1 la)
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q,,_t = h2[T(D)- T_2]+ q,.r(D)dv. (l lb)
_F &x) . ,i, ]

g(X) = I- = -q, ,a tCON .
N L 3_q_ " 3

(18)

At each boundary the internal radiative flux leaving

the boundary is equal to the sum of transmitted exter-

nally incident flux and reflected internally incident

flux. This yields the relations at x = 0 and D,

q,/_(0) = q°r,(l --p°)+qS(O)p' (12a)

q,,r(D) = q°_2(l --p°)+q_(D)P _. (12b)

Equations (2a,b) are used to eliminate the q,.+,and

q5 from equations (12a,b) to obtain expressions for

G,.(0) and G,,(D) in terms of the radiative fluxes q,r(0)

and q,.,(D),

I --p" l-Fp i ,,,,

G,.(0) = 4 l--_Tp-, q:_,,- 2 I-Z-_ q,rtU,) (13a)

G,.(D)=41--P° o I+p'
I _p--_q,.r2+2__p-,q,.,(D). (13b)

By using equations (8) and (1 l a), and equations (9)

and (1 Ib), the 7"(0) and T(D) are eliminated and the

following relations are obtained by solving the two

remaining equations for the integration, constant

CON, and forqto,,

h2 t

x IT,, + !3kJ,,r'-G,.(O)K,.dv]j

+( l+h-2D_f'q'''(O)dv-r_'-q''(D>dv}k,IJo .' (14)

I:+ q,,_(O)dr. 115)

Equations hi dimensionless ./brm .fi_r u .qra)" ho'er.

The equations for multiple spectral bands follow quite

readily from the preceeding relations and from

relations for a gray layer (one spectral band). The gray

relations are now given in dimensionless form using

quantities defined in the Nomenclature.

Two-flux equations :

_(X) = _,(0) + x,)( I -n) [4n2t4(X)- d(X)l dX
)

d(x) = d(o)-3_<,> ¢(X)dX.
)

Energy equation :

(16)

(17)

Equations for G(0) and (7(D) :

I-- o

(7(0) = 4_l_Pi ¢_')-2 1 +p'. ,,,iZ-p' qau_
(19a)

l-p".o 21+Pi'"
(7(1) = 4 i Lp, qr2+ i._p_qAI).

(19b)

Equations for CON and _,,,, :

x[.+

+(, ,..o,
(7(0) CON-]#,,,,=H, 1+3N_h > _/ J+_d0). (21)

Solution procedure by iteration for a gray ho'er.

An iterative solution procedure was used by guessing

values of the dimensionless boundary temperatures

t(0) and t(I). The boundary relations given by equa-

tions (19a,b), (18) at X = 0 and I, and (lla,b) in

dimensionless form for a gray layer, are solved sim-

ultaneously to find starting values for _r(0) and 0d I)

and _ .... A _(X) distribution passing through the

end values and through _,,,, at X = I/2 was used

as an approximation to start the iteration. Using

(7(0) and (_(I) calculated from equations (19a,b)

the trial ¢7,(X) is normalized such that the condition

3_q,_,_,O,(X)dX= _,(0)-(_(t) from equation (17) is
satisfied. The (_(X) is then obtained from equation

( 17), and CON and ¢_,o,are found from equations (20)

and (21). The t(X) is evaluated from equation (18)

and a new _dX) is obtained from equation (16). To

begin a new iteration a damping factor is applied

between the new and old t),(X) to keep the iterative

method stable. A small damping factor was needed

such as 0.0005 when the optical thickness is about 10

and there is no scattering. Solutions with scattering

required less damping. Computing time for a solution

converged to a maximum error on 0r(X) of 5 x 10 _

depends on the integration method used in equations
(16) and (17). Solutions using a trapezoidal rule took

seconds on a VAX eomputer, A Gaussian routine

took from seconds to minutes depending on the

optical properties and gave comparable results to the

trapezoidal rule.
The surface reflection characteristics were modeled

by using integrated averages of the Fresnel reflection
relations. For diffuse incident radiation this gives [6,

p. ll51,
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I (3n+ I)(n-- I)

put) --= R(n) = _5+ 6(n+ I) 2

n-'(n'--i)'-, (n-I)+ _:-+ff, ,n ;,Ti

2n3(n-' + 2n - 1) 8n4(n4+ 1)

- (n-'+ I)01"-- I) I- (n"+ I)(n*- 1) 2

x In (n) (n = ndn,). (22)

Equation (22) is for reflection of radiation incident on

a material of higher refractive index where n, and n_

are the 'higher" and "smaller' n values (the incident

radiation is from within the material with n,). After

allowing for energy incident at angles larger than the

critical angle for total reflection, the p(n) for diffuse

radiation going in the direction from a higher to a

smaller refractive index material is found from [9],

I

p(n) = I - n: [I - R(n)] (n = n,/n_). (23)

Two-flux method for a two-band spectral cah'ulation.

A two-band calculation is used to illustrate a spectral

application of the two-flux method. The letters S

and L designate the ranges with small and large fre-

quencies. Then for a quantity such as G,(0) the

band notation is used that GS(O) = S_CG,(O)dv and

GL(O) = ,_,._G,(0) dl. For a two-band calculation each

ofequations (19) has two parts, one for each frequency

range. For example, using equation (19a) gives for

(7(0) in the small and large frequency ranges,

] __po I +pi .

GS(O) = 4 _-_; gtS_'_-2i-_-p=.qS,(O) (24a)

I -p" .LO I +p' L 0
GL(O) = 4 i_p. q .-21-_T_ r(). (24b)

Similar relations are written from equation (19b) for

GS(I) and (7L(I). Equation (21) for _,,,, now contains

a contribution from each of the two bands,

I GS(O) GL(O) C_N],_.,.= H, _+ 3U_,,S+ 3-N_:;L-

+ #S_(0)+ ¢7L,(0). (25)

This also occurs in the temperature relation equation

(18),

INI GS(X) GL(X)t(X) = - 3xos - 3a.l

l
- _,,,,)( + CO NJ.

(26)

Equation (16) for the radiative flux is written for each

band. For the band with short frequencies.

/_Sr(X ) -_- qSr(0 ) -_- h'DS ( [ -- _'_,}

x [4n'-t_(X)FS(X)-C,S(X)]dX (27)
I

and similarly for _]L_(X) in the band with largc fre-

quencies. The FS(X) is the fraction of blackbody

energy in the short frequency range corresponding to

the temperature t(X)Tst.

The solution by iteration is similar to that outlined

for a gray layer except there are now two _(X), one for

each spectral band. The iteration begins by estimating

glSr(X) and _L,(X) by taking into account that r_(X)

tends to be small in a band where _:t, is large and that

the radiative energy distribution in the bands shifts to

smaller v as t(X) decreases.

The diffusion approximation Jbr optically thick spectral

layers

Whcn the optical thickness of a layer is large the

radiative diffusion method is very useful for making

predictions using spectrally dependent properties.

Since the diffusion method yields equations that are
convenient to evaluate, the method is extended here

from a single layer to a multilayer laminated com-

posite of J layers as shown in Fig. 2. From ref. [6, p.

753], the radiative flux by diffusion in any of the layers

is given by dq_._= -(4/3K,.) (de,.b/dx)dv. To obtain
the radiative heat flux including all frequencies this is

integrated over all v to give

q' = 3 dx.]o (28)

For integrating over all v it is convenient to use mul-

tiple spectral bands where K,. = K., in the ruth band

and there is a total of M bands. Then with each band

extending from v,,, to v.,+ _ where I _< m _< M,

4 M I _d_ I"-,+,
q' = - 3,,,_, K.,dxJ,, e,,b(,')dv. (29)

The quantity in the integral can be expressed in terms

of the blackbody fraction F(v/coT),

"+' e,.h(v)dv . 4
n-aT [F(v,,,+ i/c.T)-- F(v.,/coT)].

(30)

The total energy transfer by radiation and con-

duction is then given by,

d T 4 ._t Iq'"'=-- kdx+3,,__lK,,,

d _dflaT_[F(v,,,+,tcoT)_F(v,,,/c,,T]l ] (31)×dx

Since q,, is a constant through the composite layer

equation (31 ) can be integrated from 0 to .x_in thejth

layer. The result is placed in dimensionless form using

the quantities defined in the Nomenclature to yield,

4n_
t_,,,X, = Ni[t,:.-tj(X,)]+ 3

I t4
x....,t<,,,bl,,.,I:(,',,,,,/,.,,t,.,.r_,)
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FIG. 2. Laminated multilayered geometry showing coordinate system and nomenclature designating
interfaces and their temperatures for use in spectral diffusion method for single or multiple layered

composites.

- F(vmlcotjsTs,)} - t_(Xs){F[v.,+ dco6CXj)Tzi]

- Fb',.Ic ot,(.V,) T8,] }1 (32)

where t,,r = t, (Xj = 0) is at the first interface in thejth

layer (see Fig. 2).

Equation (32) is evaluated at Xj = I which gives an

expression for the temperature difference across the

jth layer in terms of q,ot. To join two layers a con-

tinuous temperature is assumed at the internal inter-

face between them. The temperature jump that occurs

in some instances at an interface when using the

diffusion approximation is neglected at the bound-

aries. The jump is small when the layers are optically

thick and when conduction is comparable to radiation

[10]. The convective and radiative balance at each

outside boundary, and the conduction with radiative

diffusion relation for _,o,, equation (32), written for

the temperature difference across each of the J layers,

provide the following simultaneous equations :

n,(I -t,s)+(i -p',.f)n_[El °, -t_.r]-tT, o, = 0 (33a)

4n/

got = N,[t,.f - ti..,l + 3

¢. I ,
×.,., _.,o,[,,._ {F(v,,,+i/Co,J_,)

- F(v,,,/c,,t,.rT,,)} - t2,{F[v.,+ ,/cot,.,T_,]

-F[vm/coh.,T_,]}] (1 _<j _< J) (33b)

i 2 4 -o -
H2(ts., - ts:) + ( 1 - Ps._)na(G._ - q r-')-- qto, = 0.

(33C)

These equations are solved for the two external

boundary temperatures t_.r and ti.,, the internal inter-

face temperatures, and the heat flow c]to, through the

composite layer. After c],o,is obtained, the temperature

distribution in each layer (I _< j _< J) is calculated by

solving equation (32) numerically for t,(X_).

Hybrid method usiny the two-flux method for thin

bands and the diffusion method for thick bands

The hybrid enerqy equation. In the numerical solu-

tions using the two-flux method, convergence was

found more difficult for a layer with optical thickness

larger than about 20. To analyze spectral cases with

both optically thin and thick bands, a hybrid method

was devised. For optically thin bands the two-flux

method is used, while the diffusion method is used for

thick bands. For simplicity a two-band model is given

here where the optically thick region is for 0 <_ v <_ v,.

so that Kos > KOL- The total flux by conduction and

radiation is

qto,= -k_tx+J,.oq. dv+ q_,dv. (34)

Using the diffusion relation from equation (28) for

the 1st integral and the two-flux relation, equation (4),

for the 2nd integral gives

dT(x) 4 d ["_

q,o, = -k dx 3_"s dx J0 e,.,(x)dv

I d f_3Kt. d-_v G,.(x)dv. (35)

By integrating equation (35) and putting it in dimen-

sionless form the temperature distribution becomes

t(x) = _ - _t(X)'fS[t(X)]

GL(X) }3_OL _,,,X+ CON (36)

as compared with equation (26) using the two flux

method for both spectral bands. Since t(X) in equation

(36) is in the blackbody fraction FS[t(X)], a numerical
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method such as a root solver is used to find the dis-

tribution t(X).

Boundary conditions. For the diffusion approxi-

mation, external radiative energy in the optically thick

band is absorbed and emitted at the boundary surface

at x = 0. The net external energy that is absorbed,

combined with the external convection, is equal at the

boundary to the internal heat conduction combined

with the internal radiative diffusion (which acts like

conduction) in the optically thick band (small v). The

total internal heat flow at the boundary can then be

expressed as this net external energy (absorbed radi-

ation and convection) added to the internal radiation

in the optically thin band (large v) which is obtained

from the two-flux method,

q,,,i = (I - ,o°){qS_, - a T(O)4FS[T(O)]}

+h,[T_t- T(O)]+qL,(O). (37a)

Similarly at x = D,

q,o, = - (I - p"){qS°,_- aT(D)4FS[T(D)]}

+h2[T(O)- Ts,.]+qLr(O ). (37b)

From equation (36) in dimensional form evaluated

atx=0and D,

4 4 1

CON = kT(O)+ _s T(0) FS[T(O)]+ w;7-..GL(O)_st,,L

(38a)

CON k

qt"_ - D D T(D)

4 I

T(D)'FS[T(D)I- _[-bGL(O). (38b)3KsD

Combine equations (37a) and (38a) to eliminate the

T(0) term, and combine equations (37b) and (38b) to

eliminate the T(D) term. Then eliminate q,o, from the

resulting two equations. This yields the equation for

CON in dimensionless form (as in equation (20)) as

H,+H, ,

× i + .iN,,-,. + 3N_I.S-• ,(0) rs[t(0)l

[ (TL(I) 4 ]+ II,_t_,+ iNK,),.+ 3NK,_st(1)'FS[t(I)]

+(l + H'-)[qLr(O)+(I-p '')

x [gISt, - t(O)_FS[t(O)]]} -OL,(I) + (1 -p")

× [qS_'_,- t(I)'FS[t(I)]] I . (39)

The t_,,,, can be obtained from from either equation

(37) or (38b).

Solution method. The iterative solution starts by

assuming (_L(X), t(O) and t(D). The (_L(0) is found

from equation (24b) and similarly for GL(I). The

¢iLr(X) is normalized according to the two-flux equa-

tion (17) so that 3K,,LJ'_Lr(X) dX = GL(0)-dL(I).

Then GL(X) is found from equation (17) as

CL(X) = CL(0)--3KDL qL_(X) dX. (40)

The CON is obtained from equation (39), and q_o_

from equations (37) or (38b). The t(X) is then obtained

from equation (36), and a new _Lr(X) is computed

from the two-flux equation (27) written for the large

v band. To start the next iteration a damping factor

is applied between this _L,(X) and the _L,(X) that was
used to start the iteration.

RESULTS AND DISCUSSION

Two:flux results.lor a gray layer

The most basic application of the two-flux method

is for a gray layer. Two-flux results are given in refs.

[7, 8] for a layer with a refractive index n = I between

two black walls at specified temperatures. Excellent

agreement was obtained with numerical solutions in

the literature of the exact radiative transfer equations.

In the present work the boundary temperatures are

unknown and are obtained in the solution as a result

of specified convection and incident radiation con-

ditions at the boundaries. The present results show

the effect of having a refractive index as large as n = 4

and the effect of isotropic scattering with an albedo
of fl = 0.9.

Figure 3 is for n = 2, and Fig. 3(a) is without scat-

tering. The 'exact' numerical results were obtained

in refs. [2, 3] where the behavior of the temperature

distributions was discussed. The two-flux method

yields excellent predictions of the temperature dis-

tributions and the results follow the pronounced tem-

perature curvature near the boundaries. There are

only small deviations from the exact solution; the

largest deviations are for _:D = ! where radiation has

a large effect since the layer is neither optically thin or

thick. The total heat flux through the layer by com-

bined radiation and conduction is predicted very well

by the two-flux method as shown on the figure.

The effect of large scattering, f_ = 0.9, in Fig. 3(b)

is for the same n and K,_ values as in Fig. 3(a). For

the same tq) a layer with f_ = 0.9 has 10% of the

absorption as for f_ = 0. For these conditions the two-

flux relations provide excellent predictions for all rr_

of both the temperature distribution and total energy

transfer through the layer

When the refractive index is increased to n = 4, with

all other parameters kept the same as in Figs. 3(a),(b),

the results are in Figs. 4(a),(b). The exact numerical

solutions are again obtained from refs. [2, 3]. The tem-

perature profiles are more uniform in the central por-

tion of the layer as discussed in refs. [2, 3] which leads

to large temperature variations near the boundaries.

The two-flux method is successful in predicting both

the details of the temperature distributions and total
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heat flux transferred by combined radiation and con-

duction.

Two-flux results for a la.rer with two absorption hands

For the results in Fig. 5(a) the spectral absorption

coefficient has two values : in the small v range (vjc,T_,

< I/'4000), a,.sD = 10, while in the large v range

(vjcoT_ > 1/4000), a,tD = 0.1. The selected value of

the cutoff frequency v, divides the blackbody spectrum

at T_ into approximately two equal parts. A gray

scattering component is present so that For the two

temperature profiles in Fig. 5(a), a,D = 0.9 or

a_D = 9.9. Thus for the two curves the spectral optical

thicknesses are, respectively, Kt_s = 10.9. h,)t. = 1, and

rns = 19.9, rnL = 10. As shown the two-flux method

applied spectrally, as developed in the analysis, pro-

vides excellent agreement with the two-band numeri-

cal solutions in ref. [3].

In Fig. 5(b) the a,D values are increased to 100 and

I for the bands with small and large frequencies, and

the gray scatteringcomponent is a,D = 9. The spectral

optical thicknesses are then KDs = 109 and _"DL = 10.
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The two-flux method provides excellent agreement of

t(X) and _,,,, with the exact numerical solution of

the transfer equations from ref. [3]. Results from the

hybrid method are also shown and they provide very

good agreement. For a large Xn in one band the hybrid

method provides more rapid convergence than the

two-flux method.

Spectra/difli_sion results/or singh' or muhiple layers

Temperature distributions are shown in Fig. 6 for

a layer with refractive index n = 2 and thrcc spectral

bandgwithin which the optical thickncsscs arc 5, 10,

FIG. 6. Comparison of spectral diffusion method predictions
with temperature profiles from exact numerical solution of
the radiative transfer equations for a layer with three spectral
bands without scattering and with an albedo of 0.9 ; _r°_= 1,
_'=0-25 _, t,l= 1, t_,=0.25, HI=H:= I, N=0.1.
Optical thicknesses in the three bands in order of increasing
frequency are Kt,, = 5, 10, 20, and the two cutoff frequencies

are given by v_/c_T_ = 1/5300, 1/3300.

and 20 in order of increasing frequency. The two

cutoff frequencies (given in the caption) divide black-

body iadiation at T_= into approximately three equal

parts. Two exact numerical solutions are given: the

solid line is without scattering (D = 0) while the long

dash line is for f_ = 0.9. The diffusion approximation

is independent of the amount of scattering and hence

only one diffusion curve is given (short dashed line).

The diffusion curve is close to the other curves but

does not follow their exact shape near the boundaries.

This is expected as the diffusion approximation (based

on an isotropic assumption) does not apply adjacent

to a boundary because the flux in this region is not

isotropic. The diffusion method predicts the heat

transfer through the layer within 10%.

The diffusion method provides a very good pre-

diction of the temperature distribution in a three layer

region as shown in Fig. 7. The cxact numerical solu-

tion was obtained by extending the computer program

from ref. [4]. Each layer has three spectral bands

defined in the caption. The diffusion results are con-

siderably easier to compute than the numerical solu-

tion of the radiative transfer equations for three

coupled layers and three absorption bands. The

opaque limit for conduction (no radiation) within the

layers, and with emission, absorption, and convection
at the outer boundaries is shown as a dot-dash line.

This shows that there is a substantial internal radi-

ation effect although the combined optical thicknesses

through the three layers is moderately large. A good

prediction (within 4%) is obtained for the heat trans-

fer through the composite.
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Results using hybrid method for spectral calculation

with one band optically thick

The two-flux solution computed by iteration had

more rapid convergence when the diffusion method

was used in the optically thick band rather than the

two-flux method. Results from the hybrid method for

a two-band calculation are in Fig. 8 for refractive

indices of n = 1 and 2. The boundary temperatures

are predicted quite well and the hybrid curves deviate

only moderately from the exact solutions within the

layer in the regions where the curvature is largest.

Good predictions are obtained for the heat transfer

_,o, through the layer.

CONCLUSIONS

The prediction of temperature distributions and

heat transfer is carried out in semitransparent layers

heated on both sides by radiation and convection so

that the boundary temperatures are not specified and

must be determined in the solution. The layers have

refractive indices larger than one, and isotropic scat-

tering is included. Three methods were developed for

performing spectral calculations. The two-flux

method was found to give excellent agreement with

exact numerical solutions for all the conditions con-

sidered. The diffusion method was developed for spec-

tral calculations in multilayered media and was found

to give good predictions for large optical thicknesses.

The diffusion results are much easer to evaluate than

a numerical solution of the radiative transfer equa-

tions for a multilayered region with several spectral

bands. A hybrid method was developed that can be

applied when there are optically thin and optically

thick spectral bands. This gave good temperature and

heat flux predictions, and was easier to evaluate than

the two-flux method when a spectral band is optically

thick.
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